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This is basically a theoretical paper moti-
vated by a problem from seismic data processing
in oil exploration. We develop a Kalman filtering
approach to obtaining optimal smoothed estimates
of the so-called reflection coefficient sequence.
This sequence contains important information
about subsurface geometry. Our theoretical pro-
blem is one of estimating white plant noise for
the systems described in Eqs. (1) and (2). By
means of the equations which are derived herein,
it is possible to compute fixed - interval, fixed-
point, or fixed-lag optimal smoothed estimates of
the reflection coefficient sequence, as well as
respective error covariance-matrix information.
QOur optimal estimators are compared with an ad
hoc ''prediction error filter," which has recently
been reported on in the geophysics literature.

We show that one of our estimators performs at
least as well as, and, in most cases better than,
the prediction error filter.
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INTRODUCTION

This is basically a theoretical paper moti-
vated by a problem from seismic data processing
in oil exploration. The theoretical problem is
one of estimating white plant noise for models

Jl and JZ:

x(k +1) = ¥x(k) + w(k) §

2(k) = Hx(k) + v(k) ) (1)
x(k +1) = ¥x(k) + Tw(k) ‘

2(k) = Hx(k) + v(k) 2 e

The rest of this section briefly describes the
- seismic data processing problem and its relation
to this theoretical problem.

One of the most useful methods to predict
the presence of oil is reflection seismology. On
land, for example, an explosive is detonated be-
low the earth's surface, imparting a pulse of
energy into the earth.,] As Wood and Treitel (L)
state, '"This source pulse ... is split into a large
number of waves traveling along various paths
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determined by the material properties of the me-
dium. Whenever such a wave encounters a change
in acoustic impedance (acoustic impedance is the
product of rock density and rock propogation
velocity), a certain fraction of the incident wave
is reflected upwards. Seismic detectors situated
at the earth's surface record the continual motion
of the earth under the impact of seismic waves
impinging from below. This recording is per-
formed digitally at a fixed sampling increment.
The resultant set of discrete observations is
called a ... 'seismic trace' and constitutes a
sample of a time series."

In 1954, Enders A. Robinson (4 and 5) pro-
posed a convolution summation model to describe
the signal received by a seismic sensor. We
write this model, as

z(k) = Vp (k) + n(k) (3)
k +
VR(k) :jau(J)V (k-j) (4)

where VR(k) is the noise free seismic trace; n(k)
is '"measurement'' noise which accounts for physi-
cal effects not explained by V_(k), as well as
sensor noise; k is short for time t ; V (i),
i=0,1,2,...,I, is a sequence associated with the
basic seismic wavelet (2 and 5); and u(j),
j=1,2,..., is the reflection coefficient sequence.
This convolution summation model can be derived
from physical principles and some simplifying
assumptions, such as: normal incidence (i.e.,
horizontal layering), each layer is homogeneous
and isotropic, small strains, and, pressure and
velocity (or displacement) satisfy a one-dimension-
al wave equation. Signal V_(k), which is record-
ed at the earth's surface, is a-superposition of

- The reader interested in elements of the seismic

prospecting method and the seismic reflection
technique should see Anstey (2), Chs. 1and 3,
and Dix (3).

- It is useful, for conceptual purposes, to draw

the analogy between a layered earth system and a
sequence of connected lossless transmission lines.
At the transmission line connections (discontinui-
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wavelets which are reflected from the interfaces
of subsurface layers. The u(j) are related to
interface reflection and transmission coefficients.

The reflection coefficient sequence often has
peaks at subsurface interfaces, and is often
assumed to be random and uncorrelated (5). It
can be represented graphically as a sequence of
"spikes' which occur at k=1,2,...(Figure 1), We
would like to learn as much as possible about the
peak values of the u(j) sequence, including ampli-
tude and time of occurrence, so that information
can be assembled about the subsurface geometry.

If noise was not present, and we had numer-
ical values for sequences V_ (i) and V*(i), then
the reflection coefficient sequence could be recon-
structed by passing V(i) through an 'inverse
filter." Let Vgr(z), V*¥(z), and u(z) denote the
z-transforms of sequences VR(i), Vt(i), and p(i).
Then, Eq.(2) can also be written, in terms of
these z-transforms, as Vp(z)=u(z)V*(z), from
which we see that u(z):VR(z)(X/V*(Z)); hence,
when V_(z) is operated upon by the "inverse
filter" bv’(z), we obtain u(z).

In the noisy situation, it is common practice
to extract the reflection coefficient sequence using
a technique which was developed by Robinson (4
and 5) known as predictive deconvolution. The
major component of this technique is a digital
Wiener filter, which requires correlation function
information. The following modeling assumptions
are associated with Robinson's work (1): (1) the
layered earth is a linear system, (2) the basic
seismic wavelet is minimum delay (i.e., minimum
phase), and (3) the reflection coefficient sequence
is random and uncorrelated.

Because the Wiener filtering approach to
predictive deconvolution is limited by these model-
ing assumptions, which may not always be valid,
it is important to look for alternative approaches
which will permit more flexible modeling assump-
tions. Kalman filtering is such an zlternative,
and has recently begun to receive attention from
geophysicists (7-9). In this paper we shall
develop a Kalman filtering approach to obtaining
optimal estimates of the reflection coefficient
sequence,

In order to use a Kalman filter, a state
space representation is required, in contrast to
the convolution summation representation in Eq.
(4), which is the basis for use of a Wiener filter.
From linear system theory (10, for example), it
is well known that the output, y(k), of a linear,
discrete-time, time-invariant, causal system,
whose input r(k) is zero prior to time zero, is

k

y(k) = 3 r(j)h(k-j) (5)
=0

where h(i) is the unit function response of the
system. Comparing Eqs.(5) and (4), we are led

2(contd)
ties), waves are reflected and transmitted, just
as they are at the interfaces between earth layers,

to the following important system interpretation for
the seismic trace model: signal Vr(k) can be
thought of as the output of a linear time-invariant
system whose unit response is V(i) and input
sequence is the reflection coefficient sequence,
ufi). (Figure 2).

We shall assume that a state space represen-
tation of Eqs.(3) and (4) is our starting point for
predictive deconvolution. How to obtain such a
representation from the available information is
not the subject of the present paper; but, is an
important topic that will be discussed in the con-
text of this application in a future paper.

For a single-input single-output system, a
most efficient state space realization is the phase
variable canonical form (11):

x(k +1) = ¢x(k) + bu(k) (6)
2(k) = h'x(k) + n(k) (7)
where x=col(x,, xz, ot xn), b=col (bl'bz"“'bn)'

_l:x_:col(l.o.---.o)-

0 1 0 . . . 0

$ = . . . . . "
0 - & 0 1
i T R A i

and xl(k)zvR(k). Accepting Eqs. (6) and (7) as
our starting point for predictive deconvolution,
instead of Eqs. (3) and (4), we shall study the
estimation of the '"'white' reflection coefficient
sequence, p(k), by means of Kalman filter theory.
Bayliss and Brigham (7) and Crump (8) have
attempted to apply kalman filtering to predictive
deconvolution; however, they assume p(k) is a
colored noise process and proceed along a route
which is quite different from the one we shall
take. Ott and Meder (9) have attempted to
estimate u(k) via Kalman filtering; however, as
we point out in Section IV, their estimator is an
ad hoc one, and does not perform as well as ours.
We shall imbed the features of Eqs. (6) and
(7) in a more general setting; namely, we shall
study the problems of estimating white plant noise
for the models o+ and #,, which are given in Eqs.
(1) and (2) respectively. Optimal estimators for
w(k) and w(k) are developed in Section II. The
relationship of zero estimates for w(k) to zero
Markov parameters is examined in Section III.
We relate our results to the Ott and Meder results
in Section IV.

OPTIMAL WHITE-PLANT-NOISE ESTIMATORS

Introduction

Let us dircct cur attention, for the time
being, at &, in Eq. (1), in which x€R™, weR™,
zZ€RM, veRM, and w(k) and v(k) are uncorrelated
gaussian white sequences with covariances Q and




T

G ——

Single-Stage Optimal Smoothed Estimates of w(k)
Here we develop a more useful equation for

ifklk+ 1} then Eq. (16), and develop an equation

for the error covariance matrix w«u(k‘k{“' where

R, respectively. Qur objective is to obtain a
minimum-variance estimator for the white-plant-

noise sequence (k).
Let
ZGy= 2L Z) e BliR) (8)
~ ~ L
5,k D EENTT ko ) - E{Tk k4 1)} Tsame ]} (17)
and gfk‘j) denote the minimum variance estimate

of x(k) which uses all the measurements in Z()). Theorem 1. For system o,
From a fundamental result in estimation theory
(12, for example), it is well knox\:n that fc_(kfllk): @_(k[k H)=QP'l(k+llk)K(k+l)_’i’_(k+l|k) (18)
Efx(k + 1) |Z(k)} and X(k+1|k+1) = Elx(k + )| Z(k+1}, .
and that i(kﬂ]k) and _z_?(kf!lk+l) can be computed B 3
from the Kalman filter, whose equations are: - 1 !

¥, (klk+1)=Q -QH'[HP(k +1|K)H' + R]™ HQ (19)
x(k+1|k) = 8%(k|k) (9)

.
P(k+1]k) = §P(k|k)? +Q (10) Proof: (a) Derivation of Eq. (18). Meditch (12)
o . . . ~ k :
K(k+1) = P(k rl{k)H'[}{P(kH‘k)H'\tR] 1 (11) derives the following equation for Xx( |k+l)
Z(k +1]k) = z(k+1) - Hx(k +1|k) (12) X(k |k +1) = %(k k) + A(K)K(k + 1)Z(k + 1{k) (20)
x(k +1{k+1) = X(k + 1]k) +K(k +1) Z(k + 1] k) (13) where
P(k+1{k +1) = [I- K(k + )H] P(k +1]k) (14) A(k)=P(k|k)@'P'l(k+l\k) (21)
Observe, from Eq. (1), that z(k +1) depends Substitute Egs. (20) and (13) into Eq. (16), making

on w(k), wk-1), ..., w(l), whereas z(k) depends nse of Eq. (9), to show that
only on w(k-1), wk-2), ..., w(l); hence Z(k+1)
depends on w(k), but Z(k) depends at most on &_(k|k+l)=U-ﬁA(k)]K(k-&l)‘E(k +l|k) (22)
;{(k-l). The single-stage predicted estimate,
x(k Hlk). in Eq. (9) can be obtained directly From Egs. (21) and (10), it follows that

from Eq. (1) by operating on both sides of the
state equation with the conditional expectation

operator Ef.|Z(k)}. The term E{u(k)|Z(k)} = I~QA(k)=QP-l(k+l‘k) (23)
Ef{w(k)} = 0 by virtue of our preceding remark and
the fact that w(k) is a zero mean process, Substitute Eq. (23) into Eq. (22) in order to

In order to obtain the first meaningful mini- obtain the desired expression for '_i)_(klk +1) in Eq.
mum variance estimate of w(k), operate on both (18).
sides of the state equation in Eq. (1) with the (b) Derivation of Eq. (19). Signal z(k+l|k),

=) .

operstor-E{ - | 2+11 § the innovations process, is known to be zero mean
d it 13), d,

Efx(k+ 1| Z2(k+1)) = $E{x(k)| Z(k + 1)) S e L W

+Elw(l)| Z(k+1)} (15) Elz(k+1\k)§'(k+1lk)}=Hp(knlkm’+R. (24)
The last term in Eq. (15) will not be zero because Subsequently, E{G_J(k‘k‘kl)}:o, which means that
Z(k +1) depends on 1(k); hence, we obtain the E{@k|k+D}=E{nk) }-E{d(k|k+1)} =0, and therefore,
following estimator for w(k): that
Bkfk+1) = X(k+ 1|k +1) - $X(k |k +1) (16)

¥yklk+1) = E{Gk |k + DT (k [k + 1)}

Observe that this is a single-stage smoothed es- =El[’1'(k)-’il(k‘k+l)][m(k)-&(k|k+1)]')

timate of w(k) which requires not only the optimal ~E e '
filtered estimate of x(k+1), but also the optimal =Q’El£‘k,.“i“‘lk*”) "Eiﬂ(k‘k*”ﬂ (k)]

single-stage smoothed estimate of x(k), for its +E"f_v(klk+l)&'(k|k+l)] (25)
implementation. '

By way of these calculations we have estab- From Egs. (18), (11), and (24), it follows that
lished the fact that minimurn variance estimates of
w(k) will be optimal smoothed estimates. In the E‘@_(k‘k\‘l)i‘(k\k+1)]=QH'[HP(k+l\k)H'+ R]-lHQ
remaining paragraphs of this section we shall ex-
plore i'_(k\k +1) and its estimation error in more (26)
detail, obtain recursive equations for an optimal Next, we shall show that
4-stage smoothed estimator, d(k|k+£), and its
error covariance matrix, and, shall obtain compa- Elﬂ(k)zl(k*l‘k)} -on' . (27)

rable resuits for estimates of w(k) in JZ' Eq. (2).

644




Recall, that
Z(k +1]k) = HR(k +1]k) + v(k +1) (28)

where S(k+1]k) = x(k) -%(k 4 1]k). Meditch (12)
derives the following equations for E{(koﬂk) and
X(k|k) [Egs. (5.63) and (5.64), respectively in
12]:

X(k 4 1|k) = (k| k) + w(k) (29)
and

X(k|k) = [1-K(k)H]2X(k - 1|k -1)
+ [I- K(k)H] w(k - 1) - K(k)v(k) (30)

Substitute Eq. (29) into Eq. (28), to show that
Z(k +1]%) = HE X' (k| k) + Hy(k) + v(k +1) (31)

Observe, from Eq. (30), that X(k|k) does not
depend on w(k); it depends at most on (k- 1); hence,

E{o0) 2 (k +1]10) = E{w) X' (x| k) }(H3)'
+QH' + E{u(k) v' (k + 1)}
-QH' (32)

which is Eq. (27).

Finally, to obtain ¥ (k|k+1) in Eq. (19), sub-
stitute Eqs. (26), (18), and (32) into Eq. (25). O
Comment 1. It is interesting to observe, from
Eq. (18), that the estimator of white noise process
w(k), Dik|k+1), is itself a white noise process.
This is especially useful for the predictive decon-
volution problem that was described in Section I,
where the reflection coefficient sequence, which is
to be estimated, is white. Additionally, we
observe from Eq. (19) that § (k|k+1)<Q, which
means that we can expect to do better by using
d(k|k+1) then by using a zero estimator for w(k).

L-Stage Optimal Smoothed Estimates of w(k)

Here we generalize the results of the pre-
ceding paragraph, obtaining &(k|k+£) and ¥ (k|k+2).
These estimator equations are useful in that they
permit us to compute fixed-interval, fixed-point,
or fixed-lag smoothed estimates of the plant noise.
We define § (k|k +2) as follows:

tw(k|k+ L =E{(¥(k|k+8-E{Tkik+H]}] [same]'}

(33)
where
Wk |k +2£) =w(k) - Bk |k + 2) (34)
Theorem 2. For system J,,
Bk|k+2)=O(k|k+2-1)+Nk|k+2)Z(k+L|k+L-1)

(35)
where £=1,2,...,0k|k 80,
N(k|k+l):QP'l(kHIk)K(kH) (36 )

645

kit-1

N(k\ku)-op"(knlk; N A(i)K(k+2) (37)
izk+l

and

AGi)= Pili e P Y ienli) (38)

Additionally,

btk |k +2) =y (k|k+2-1)-Nk|k+ ) (HP(k + L]k + £ -1)H'
+RIN'(k [k + 2) (39)

where 4,(k|k) 2Q.

Comment 2. Assuming the truth of Eq. (35),
then another representation for @_(klk+l), which is
nonrecursive, is

L
Bklk+2)= Z N(k|k+j)Zk+jlk+j-1) (40)
j=1

This result is obtained by iterating Eq. (35) on
L. O

Comment 3. Suppose we have a complete set of
measurements, z(1), z(2),..., z(L), available.
Then we can use all of these measurements to
obtain fixed-interval estimates of w(0), w(l),...,
w(L-1). In Equation (40), set k+.=L and let
4=1,2,...,L to obtain the following fixed-interval
estimator oi plant noise:

)
B(L-2|L) =jz_‘l N(L-2{L-2+5)Z(L-2+jf{L-2+j-1) (41)

A fixed-point estimator of w(k) is d(k|k+2)
where k is fixed and L is varied. Our formulas
in Theorem 2 are in fixed-point format, and can
be used to enhance estimates at specific values of
k.

A fixed-lag estimator of w(k) is H(k|k+4)
where L is fixed and k is varied. As such,
Q(k|k +£) utilizes the window of measurements,
z(k+1), z(k+2),..., z(k+2). For example, &(1]|1+£)
utilizes measurements z(2), z(3),..., z(L+1),
whereas ©(2|2+£) utilizes the measurements z(3),
z(4),..., z(L+2). A fixed-lag estimate of w(k)
would be useful in those situations where we decide
to use only a fixed length of data to obtain the
optimal estimate. O

Proof of Theorem 2: (a) Derivation of Eq. (35).
Let

Z(k+2-1)={z(1), 2(2),..., z(k+2-1)]} (42)
and
Zk+2)=1z(1), 2(2),..., 2(k+2)} (43)
3

ir—'ll A()=A(1)A(2)... A(I-1)A(I).

— -
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Operate on both sides of the state equation in Eq.
(1) with operators Ef«|Z(k+£-1)} and E|-|Z(k +£)}
to obtain the following results:

Uk kb £-1) - Rk + 1K+ £-1) - 8R(k|k +L-1) (44)
and
B(k|k+2)=X(k +1|k+2) - dx(k|k+2) (45)

Meditch (12) derives the following equation [Eq.
(6.60) in 12] for X(k|j), j=k+1, k+2, ... :

(k| = x(k|j -0+ M| HZEG - (46)
where
j-1
M(k]j) = [ AC | K(5) (47)
=

We use Eq. (46) to obtain expressions for
g_(klk+l) and jk#l|k+l), as follows:

X(k |k +2) = X(k|j) (48)
j=k+4

and

gk+nk+u:§wh)| (49)

k=k+l, j=k+1
l i

Substitute Eqs. (48) and (49), using Eqs. (46),
(47), and (44), into Eq. (45) to show that

k+4-1
Gk k+2)=O(k|k+2-1)+[1-3A(k)] T A(i)
i=k 41
“K(k+2)Z(k+ L]k +2-1) (50)

Apply Eq. (23) to Eq. (50), and define matrix
N(k|k+£) as in Eq. (37), to obtain our Eq. (35).
We define N(k|k) as in Eq. (36) so as to be able
to obtain Q(klki»l) from Eq. (35) that is consistent
with our earlier results in Theorem 1.

(b) Derivation of Eq. (39). From Eq. (40),
we see that Efi(kfk+l)}=g; subsequently,
E{T(k|k+£)}=0, and

ow(klku):Ei@(klku@'(klku)} (51)
where, from Eqs. (34) and (35),
Tk|k+2)=T(k|k+2-1) -N(k|k+)Z(k + L]k + £-1) (52)
Substitute Eq. (52) into Eq. (51), using Eq. (24)
for k=k + £, to obtain the following expression for
tw(klku):
tw(k|k+l.):tm(k]k+i-l)+N(k|l<+t)fHP(k+l.|k+l-l)H'

+ RIN(k |k + £) (53)
“N(k|k+ DE[Z(k+ 4]k + £-1)T (k|k + 2-1))
SEfT(k k4 £-DZ" (k+ 2]k + £-DIN"(k]k + 2)

646

Because Z is a white sequence,
E{Z0 1 jk+j-1)Z'(kt 4]k v 2-1)} =0

for all j#£; hence, using Eqs. (40) and (34), it is
straightforward to show that

E{Bk|k+2-1)Z'(k + 2|k + £-1)}
=E{w(k)Z' (k+ L]k +£-1)) (54)

The quantity on the right-hand side of Eq. (54) is
evaluated in Appendix A, as “'2'4-)("“'1):

oéw(zlz-u=N(klk+urup(k+z|k+1-uu'+r(] (55)
Apply Egs. (54) and (55) to Eq. (53) to obtain our
results in Eq. (39).

Optimal Smoothed Estimates of w(k)

We now direct our attention at estimation of
w(k) in o, Eq. (2), when we R9, q<n. Signal
wk) is white with covariance Q.

Let \"g(klk-l»l) denote the minimum-variance
L-stage smoothed estimator of w(k), and tw(klk+l)
its error covariance matrix,

uklku): Efl@(k|k+£) - E{w(k|k+£)}][same]'}
(56)

Theorem 3. For System "Z'

Wik|k+2)=W(k|k+2-1)+N_(k|k+£)Z(k+L]k+2-1)

(57)
where £:1,2,..., wk|k) 20,
Nw(k|k+1)=QlI"P'l(k+l|k)K(k+l) (58)
@ k+4-1
N (k|k+2)=QT'P  (k+1]k) T A(i)K(k+12) (59)
w 1 .
izk+1
and A(i) is defined in Eq. (38). Additionally,

ikalk+l)=iw(k|k+l-l)-Nw(k|k+l)[HP(k+l|k+l-l]H'
+R] N_:v(klki»l) (60)
A
where tw(k[k)= Ql'
Proof: System o/, in Eq. (1), can be made

equivalent to system "Z' in Eq. (2), by setting
w(k) =Tw(k), in which case

B(k|k+2)=TwW(k|k+2) (61)
and
Q=I‘er‘ (62)

All of the results in Theorem 3 follow upon sub-
stitution of Eqs. (61) and (62) into the respective
Theorem 2 equations. O




In the reflection scismology problem
Eqs. (6) and (7)].
reflection coefficiont
hence, the

Comment 4,
described in Section 1 [see
w(k) is a scalar --- the
(k)
oncs which are applicable

seguence, results in Theorem 3

are the to that problem.

ZERO MARKOV PARAMETERS CASE

Ott and Meder (9) consider an cxample which
they state ''... is of special interest for seismic
exploration ...'". It is a one dimensional damped
harmonic oscillator which is excited by impulses
of random mtensxtx in random time instances.
For their example’,

xl(k+l) 1 b xl(k) 0
- + u(k)
x,(k+1) BT 1-aT x, (k) o T
(63)
"1“"
z(k)=(1 0) + v(k) (64)
x, (k)

If one substitutes the $, I', and H matrices for this
example into Eqs. (57) and (58), for &=1, he
finds that J(k|k+1)=0. Additionally, O(k|k+£)#0
for L22, This result suggests that perhaps the
structures of %, I, and H establish a first value
of 4 for which w(k|k+£)20.

Let us take a closer look at N_(k|k+1) in

Eg. (55). Substitute Eq. (11) into Eq. (58), to
shcw that
Nw(k|k—l)rQl(HI‘)'[HP(kH\k)H'+R]'l (65)

Observe that N (k|k+1) depends on the Markov
parameter HT (‘1_5). In the Ott/Meder example
HT=0.

We generalize the preceding observation in
the following theorem, the proof of which is given
in Appendix B.

Theorem 4.
-1

For system o,, if HT=HeI'=... =

=0, and H¥Tr#0, then

wiklk+£ =0 for £=1,2,...,j (66)
and
wiklk+j+1)#0 . (67)

This theorem states that if the first j Markov
parameters are zero, then the first non-zero
estimator of W(k) is the one which looks j+1 points
into the future.

Scme consequences of Theorermn 4 are given
in the following corollaries to that theorem.

4
Equauon (63) is obtained by discretizing the

equatwn ‘(t)‘ax(t)oax(t) w u(t), assuming that

l« " gk T is small,

Under the conditions of Theoren 4,

Corollary 1.

v (klkt2) Q for. 21,2 .0cni (68
W ]

The proof of this simple result follows
directly from the fact that, bLecause of Eqg. (60),

W(k|k+2)=w(k) for £-1,2,...,j.

Under the conditions of Theorem 4,

Corollary 2,

(el +0) QI-Q’(IMJI‘)'[HP(k tir1]k+jH"

+ R}'l(m»’r)ol (69)

Proof: From Eqgs. (60) and (68), it follows that

‘bw(k|k+j+1)—-Q|—Nw(k\k+j+l)[HP(k+j+1|k+j)H'

+R]N:v(k(k+j+l) (70)
An equation for N (klk+j+l) is developed in
Appendix B, Egq. YVB-IO). Substitute that equation
into Eq. (70) to obtain the desired result in Eq.
(69).

AN AD HOC ESTIMATOR

Ott and Meder (9) define a 'prediction error
filter'' for w(k), in system o, as the difference
between x(k+l|k+l) and %(k+1]k). In this section,
we shall examine their estimator and compare its
performance with our estimator &(k|k+l)(Section 1I).
We shall also study the consequences of a pre-
diction error filter for estimating w(k) in system
/. As such, this section serves to illustrate
some of our theoretical results.

Ad Hoc Estimator of w(k)
Combine Eqs. (13) and (9), to show that

Rk +1]k+1)= §x(k|k) + K(k +1) Z(k + 1] k) (71)
in which we recall that Z(k+1|k) is the white
innovations process. Comparing the structures of
Eg. (71) and the state equation in Eq. (1), we
define a ''prediction error filter" for w(k), denoted
here as @l(k), as
gl(k;é‘x(ku)z(knlk) (72)
Observe that w (k) is a white estimator of w(k),
and that &, (k)= X(k+1|k+1) -%X(k+1|k). Observe,
also, that ~_1_J_(k) is not an optimal estimator of w(k);
it has merely been defined as in Eq. (72). As
such, we refer to the prediction error filter as an ,‘j
ad hoc estimator.
We shall compare '_I)_‘l(k) with -I)(k‘k+1). Let
(k) denote the error covariance matrix for the
hoc estimator u. (k) faes,

N (k)-El(m (k) - E{T, (kmtsame]} (73)

where




T, k) _«_(k)<ll(kl (74)
From Eq. (72), it follows that E{1 4 (k)? 0; hence,
Eizl(k)} :0, so that

k AT (k)T (k) ) 5
LY Hilmll(k», (75)

Substitute Fqs, (74) and (72) into Eq.
Eqs. (24), (27), and (1ll) to show that

(75), using

g, 0k)=Q+ PH'(HPH'+ R)-IHP -QH'(HPH'+ R)‘lﬂp
- PH'(HPH'+ r) 'HQ (76)

in which P is short for P(k+1]k).

Theorem 5. For system Jl.

b klk+D) Sy (k) (77)

Proof: From Eqs. (76) and (19), it follows that

¥,,00 -4 (el +1) = (P-Q)[H'(HPH'+ R)HI(P-Q) (78)

Matrix R>0, and (HPH'+R)>0 for the inverse of
(HPH'+ R), which is used to calculate K(k+1), to
exist, It is straightforward to show, therefore,
that the right-hand side of Eq. (78) is positive
semi-difinite; hence, the truth of Eq. (77). 0O

The significance of Eq. (77) is that it implies
that one will usually obtain better performance with
our single-stage estimator, é(klkd»l), then with Ott
and Meder's ad hoc predictic ~>rror filter; and,
that one cannot do worse u. ., .ur estimator
rather than the prediction error filter.

Ad Hoc Estimator of wi(k)

Now compare the structures of Eq. (71) and
the state equation in Eq. (2), to obtain the follow-
ing ''correspondence'

I‘\_N':l(k)eK(k+l)Z(k+1|k) (79)

In this equation, _\i} (k) denotes the prediction error
filter for w(k). Unfortunately, Eq. (79) is an
overdetermined system of equations; i.e.,

dim I'w (k)=n and n>dim Wj(k)=q. We use the
pseudo-inverse of ', (I''T")-IT', to obtain the follow-
ing ad hoc prediction error filter for w(k):

a PR | ~

yl(k)e(‘. 'T) T'K(k+1)Z(k+1|k) (80)
Let § (k) denote the error covariance matrix

for W (k), defined analogously to i (k) in Eq. (73).

]Pro"eeding as we did for the calculation of

¥ (k) in Eq. (76), it is straightforward to show

thht

‘wl(k) =Ql+(r’f" I"PH (HPH'+R)~ HP"(I‘ F)

-er'H'(HPH'+ R)" wpr oy

(o) Y PH (HPH' 4 R)'lHTQl (81)
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PPk +1{k).

where,

Theorem b, For system ),

2

'l'w(k|kol)$# (k) (82)

wl

The proof of this result parallels the proof
of Thzorem 5, and is left to the reader. Once
again, we see that we can expect to do at least as
good using our single-stage smoother, _\Sr(k‘lutl).
instead of the prediction error filter, w (k).

Finally, let us reconsider the harmonic
oscillator example considered by Ott and Meder,
whose equations are given in Eqs. (63) and (64).
Recall, from our discussions in Section III, that
HI =0 for their system. Under this condition,
iwl(k) in Eq. (8l) reduces to

v, (k) =Q+ (') TP HPH'+ R) THPO(OT) T (83)
which means that, for their example,
(029 (84)

From an estimation error-covariance point of
view, Eq. (85) implies that the prediction error
filter performs no better, and usually worse, than
the zero estimator of w(k)! Why bother with w_(k),
when 0 appears to be a better estimator of w(k)L'
The answer to this question is related to the seismic
data processing problem described in Section I.

We are interested in a time-series for the reflec-
tion coefficient sequence. By examining peak values
and their times of occurrence, we can infer some
things about subsurface geometry. Even a time-
series estimate such as w (k) will have peak values
(for low signal to noise ra%:xos) that make w (k)
useful [see 9 for some numerical examples that
support this statement]; whereas, a zero estimate
of w(k) does not contain any of this useful informa-
tion.

CONCLUSIONS

We have demonstrated how an important
application can be interpreted, from a state equa-
tion point of view, as one of estimating plant noise.
Our emphasis in this paper has been on the
theoretical development of white, plant noise esti-
mators. We have shown that such estimators
provide us with smoothed estimates of the plant
noise, By means of the equations which are
derived in the main body of this paper, it is
possible to obtain fixed-interval, fixed-point, or
fixed-lag optimal smoothed estimates of white plant
noise, as well as respective error covariance-
matrix information.

We have also compared our optimal estimators
with an ad hoc ''prediction error filter,” and have
shown that better performance can be attained with
our estimators.

Much work remains to be done, including
application of our smoothers to real seismic data;
study of computational requirements of our

b




smoothers; development of fast realizations of our
smoothing equations; and the extension to multi-
input multi-output seismic
Recall, also, that a major featurce that the Kabman
filter has to offer over the Wiencr filter is it can
be used to estimate states in time-varying systems.
Additionally, it can be "extended'" to estimate
states in nonlinear systems. The extensions of the
results in this paper to estimation of the reflection
coefficient sequence for time-varying and nonlinear
source-earth models are other areas for additional
work.
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APPENDIX A

Calculation of E{Z(k+£|k+2£-1)w'(k)]
For notational convenience, let

E{Z(k+ llk+l—1)ﬁ'(k)]gt,im(l‘l-l) (A-1)
Theorem. For system "1 .
%”(110) = HQ (A-2)
- * -l e
-gzwulz-x)-nn (k+2-1,k)% Q (A-3)
where
1
d¥k+2-1,k) = 1 [(I-K(k+jH]$} (A-4)
j=1-1
and £=2,3,... . Additionally,
‘,‘zm(l,ll-l)=N(k|k+£)[HP(k+l.|k+t-l)H'+R] (A-5)

where N(k|k+£) is defined in Egs. (36) and (37).

Proof: (a) Derivation of Eq. (A-2)(4=1 case).

¥, (110) = EfZ0c +1{K)2' (k)] (A-6)
The truth of Eq. (A-2) now follows from our
developments in Eqs. (27) through (32), since
\jz”(l\O) is simply the transpose of the results in
Eq- (27)-

(b) Derivation of Eqs. (A-3) and (A-4).
Set k=k+£4-1 in Eq. (31) to show that

Yk +L|k+4-1) = HEX(k + £-1|k+2-1) + Ho(k + £-1)
+v(k+4); (A-7)
hence,

tz”(l|l-l)=H§Eiz(k+t-l|k+l-l)£'(k)] (A-8)

since Ejw(k+2-1)»'(k)} =0 and Efv(k+2)w'(k)}=0.
Next, write Eq. (30) as

Rk |K) = 870, k- DE(k - 1]k - 1)+ 8%k, k - 18wk - 1)
- K(k) v(k) (A-9)




where
: &

2k, k- [I-K(k)H]? (A-10)
The solution of Eq. (A-9) for Z(k“‘) is (Chapter
1 14)

, k 1
Rk k) =25k, 0)%(0]0) +2 &%k, )L 87%(i,i- 1) ¢ w(i-1)
2.4 vl i-1 2

- K(i) v(i)] (A-11)
where
(K, i) = 9¥(k, k1) ¥ (k-1,k-2). .. 87(i+l, i) (A-12)
Set k=k+£4-1 in Eq. (A-11) and observe that the
only term which depends on w(k) is the one for
which i=k +1; that term is
e % -1
(k+L-Lk+D)E(k+1L, k)& w(k) ,
which can also be written as
i*(k«kl-l,k)é‘lg(k). Based on these results,
evaluate the right-hand side of Eq. (A-8) to show
that
thult-x):HN*(ku-l,k)b'lQ k. (A-13)
which is Eq. (A-3). Substitute Eq. (A-10) into
Eq. (A-12) to obtain Eq. (A-4).

(c) Derivation of Eq. (A-5).
Set k=k+j in Eq. (l4), to show that

x-x(ku‘)H:P(k+j]k+j)p'1(k+j|k+j-1). (A-14)
Substitute Eq. (A-14) into Eq. (A-4), take the
transpose of the resulting expression, and use Eq.

(38) to show that

oi(zlz- 1) :Qp'l(knlk)A(ku)A(k +2)...Ak+L-2)
*Pk+ 4-1{k+2-1)8'H' (A-15)

Next, using Eq. (1) in which k=k+4, write
N(k|k+2) as

N(k |k + 2) :QP'l(k+l|k)A(k+l)A(k+ 2)... A(k+1-2)
*Pk+2-1]k+4-1)#"H'[HP(k + L]k + £- DH'
+R]-1 (A-16)

Comparing Eqs. (A-15) and (A-16), we see that

N(k{k+l.):t,'lw(l[l-l)[HP(k+l|k+l-l)H'+R]-l,
(A-17)
from which Eq. (A-5) follows,

APPENDIX B

Proof of Theorem 4

The following nonrecursive equation for
Q(k\k ¢+ 1) is easily obtained from Eqs. (40), (61),
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and (59):

)

Wik|ktg) - ,Nw(klk..)g'uuilkn-n (B-1)
i=1

Lemma, For syktem o, i M =$"%,.. M3V T

=0, then Nw(klk +q) - 0.
Proof: From Eq. (50), with £=q,

& 2l k*q-l
N (k|k+q):Qlf‘P (k+1lk) § A(m)K(kk+q) (B-2)
s m=k+l v

The following equation (12), which is a well-known
alternative to Eq. (14), is used in our proof:

Plx+1lk =P lus1|k+n-H'RH (B-3)

Substitute Eq. (B-3) into Eq. (B-2), and assume
HIrr =0, to show that

k+q-1

Nw<klk+q)=olr'P'l(k+1|k+1) N A(m)K(k+q)
m=k+l
(B-4)
or,
gts k+q-1
Nw(k\k+q)=er‘P- (k+1|k+1)A(k+]) T A(m)K(k+q)
m=k+2
(B-5)
Substitute Eq. (38), for i=k+1, into Eq. (B-5) to
show that
GLg k+q-1
Nw(k|k+q)=olr'¢P (k+2|k+1) 0 A(m)K(k+q)
m=k+2

(B-6)

Substitute Eq. (B-3), for k=k+l, into Eq. (B-6),
assume H3TI'=0, and, substitute Eq. (38), for
i=k+2, into the resulting expression, to show that
P S § i
Nw(k\k+q)=Q1T (@7)P (k+3|k+2) I A(m)K(k+q)
m=k+3
(B-7)

Continue this development ;isuming HQZI‘=0, then
H&3r=0, ..., and then H$9°°r=0, to show that
' q-ll -1

Nw(k|k+q)=olr (2" )P (k+q|lk+q-1)K(k+q)
(B-8)

Finally, substitute Eq. (11), for k=k+gq, into Eq.

(B-8) to show that

Nw(k|k+q)=er'(¢q“‘)'u'mp(k+q|k+q-1)H'+n]“
(B-9)

If H@q-lr‘=0. as assumed, then N (k]k+q)=0,
which completes the proof of the lemma.

Proof of Theorem 4. Theorem 4 is proved by
repeated application of our lemma, as follows, If
Hr =0, then N (k|k+1)=0, which means that




TN ITEIT

W T A

Wiklk +1)=0 [see Eq. (B-1)J. If H"-0 and HéI =0
N (k|k+2)=0; but, since HT=0, N (k|k+1)=0 as
well; hence \j(klk*l)zo. Procecd}‘r’wg in this . 1
manner, we conclude that if HC=H¥ " =.., = HQ)- r
=0, then Nw(k\k0j)=Nw(k‘k+j-l):... =N (k|k+2)
in(k‘k#l) =0; hence, _\E/(k‘k +j)=0. In short, we
have shown that, under the conditions of Theorem
4, Eq. (66) is true.

Next, set q=j+1 in Eq. (B-9) to show that

N (klk+j+1) =Ql(m’r)'[up(k ti+llk+jH"+ R]-l
(B-10)

Since H#'r 20, N_(k|k+j+1)#0; hence, under the
conditions of the theorem,

Q(k\k+j+1):Nw(k\k+j+l)'§_(k+j+l‘k+j)tg,
(B-11)

which proves Eq. (67), and, completes the proof.
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by Eq. (4).
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